User Tools

Site Tools


 ?
everplast:plastic_materials:hdpe

Table of Contents

HDPE

High-density polyethylene (HDPE) or polyethylene high-density (PEHD) is a thermoplastic polymer produced from the monomer ethylene. It is sometimes called “alkathene” or “polythene” when used for HDPE pipes. With a high strength-to-density ratio, HDPE is used in the production of plastic bottles, corrosion-resistant piping, geomembranes and plastic lumber. HDPE is commonly recycled, and has the number “2” as its resin identification code.

Properties

HDPE is known for its high strength-to-density ratio. The density of HDPE can range from 930 to 970 kg/m³. Although the density of HDPE is only marginally higher than that of low-density polyethylene, HDPE has little branching, giving it stronger intermolecular forces and tensile strength than LDPE. The difference in strength exceeds the difference in density, giving HDPE a higher specific strength. It is also harder and more opaque and can withstand somewhat higher temperatures (120 °C/248 °F for short periods). High-density polyethylene, unlike polypropylene, cannot withstand normally required autoclaving conditions. The lack of branching is ensured by an appropriate choice of catalyst (e.g., Ziegler–Natta catalysts) and reaction conditions.

The physical properties of HDPE can vary depending on the molding process that is used to manufacture a specific sample; to some degree a determining factor are the international standardized testing methods employed to identify these properties for a specific process. For example, in Rotational Molding, to identify the environmental stress crack resistance of a sample, the Notched Constant Tensile Load Test (NCTL) is put to use.

Owing to these desirable properties, pipes constructed out of HDPE are ideally applicable for potable water, and waste water (storm and sewage).

Reference URL

everplast/plastic_materials/hdpe.txt · Last modified: 2019/08/13 14:10 by jonathan_tsai